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Self-similar solutions are known [1-3] for problems on the propagation of laminar, plane 
(free and semibounded) jet, e.g., source in heated space. Relations obtained in these works 
have a significant disadvantage: a singularity arises as x § O. This means that it is pos- 
sible to use these equations to correctly describe the flow only at large values of x. In 
the process of finding non-self-similar solutions for jet issuing from a finite orifice, the 
form of the stream function has been established and the first three terms of the series 
(dynamic problem) have been obtained in an analytic form [4]. Non-self-similar thermal prob- 
lems are considered in [5, 6] where these studies [4] have been extended. However, the ques- 
tion of the determinationoof constants of integration and the region of convergence of the 
obtained series remained open in [4-6]. The solution to the problem on the propagation of 
laminar, plane (free and semibounded) jet in heated space is obtained in the present paper 
for different boundary conditions of the temperature of the surrounding medium or the surface 
for arbitrary Prandtl numbers. 

i. Laminar boundary-layer equations for stationary, plane, incompressible fluid flow 
at constant pressure in the external flow have the form [3]: 

uSu/Ox @ vSu/Oy = ~82ulOg 2, (i.i) 

Ou/Ox @ O~Oy = O, uOAT/OX @ vOAT/Og = aO~AT/Oy 2. 

The  b o u n d a r y  c o n d i t i o n s  f o r  f r e e  p l a n e  j e t  a r e  w r i t t e n  i n  t h e  f o l l o w i n g  f o r m :  

v = @u/Og = 0 at g = 0, u - - ) - 0  as y - +  co; ( 1 . 2 )  

O0/@[y= o - 0 ,  0 ( x , _ _ c o )  = 0, 0 = AT;  

o(x ,  + c o )  = 1, o (~ ,  - c o )  = o ,  o =  ( i t  - v ~ ) / ( T ~  - T,~). 

For plane, semibounded jet, 

(1.3) 

(i.4) 

v =  u = 0  at g = O, u -~ 0 as g -~- co; 

0(x ,  o)  = 0,  0 (x ,  co)  = 0,  0 = AT; 

O0/Oyly= o = 0, O(x, co) = 0, 0 = AT;  

o (x ,  o)  = ~, o (x ,  oo)  = o ,  o = (~" - T = ) / ( T ~  - -  ~=); 

O0lOyly= o = - - t ,  O(x, oo) = O, 0 = k (T  - -  T~)lqw. 

(i.5) 

(1.6) 

(1.7) 

(i.8) 

(i.9) 

In order to determine nontrivial solution of the system (i.i) at zero boundary conditions it 
is necessary to specify integral conditions which are obtained by integrating equations of 
motion and thermal energy, taking into account continuity equation and boundary conditions 
[i-3] : 

--zo 

(i.i0) 

p u A i d g =  Oo, 7 z  uAT  udy d g = -  
- -  r 0 0 

oo 

at" u OAT d 

0 

(l.ii) 

Here u and v are velocity components; AT = T -- T~, excess temperature; x and y, streamwise 
and transverse coordinates; v, a, and k, coefficients of kinematic viscosity, thermal diffu- 
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sivity, and thermal conductivity; p, density; q, heat flux; T~ and Tw, temperatures of the 
surrounding fluid at rest and the wall; T~ and T=, temperatures outside the jet at y = +~ 
and y =-~, respectively. 

2. The previously obtained solutions to the system of equations (i.i) were based on 
the following similarity transformations: 

~(x, q) = ~+~/o(~)x~ +~, O(x, ~]) = do(~)x~,  

x = x, ~ = (xv)@, 

which lead to the limitations mentioned above. Consider a more general similarity trans- 
formation: 

~(~, ~) = ~ + V ( ~ ) : o ( x ) ,  O(x, ~ ) =  d@~(z), 
x = x ,  ~] = , A ~ ( x ) y .  

Substituting (2.1) in (i.i), we obtain 

/n~ lp( la  + //n~ipo2px --/~pC; (pt~)x = O, 

t d ~ m ~ e  + / d ~ e p x  - - / n d p ~ e x  = O. Pr 

The solution to Eqs. (2.2) is written in the form 

(2.1) 

( 2 . 2 )  

p = X ~+1, ~ : X ~, e = X 8, X = x(l + y/((~ + l)x)). ( 2 . 3 )  

Here the form of the resulting functions f(~) and d(~) satisfying boundary and integral con- 
ditions coincides with known solutions for free (8 = --=/~, ~ = --~/s, 6 = 0) [i, 3] and semi- 
bounded jets [8 = --s/,, ~ = --(3Pr + l)/8Pr, 6 = --~/,, 6 = O, ~ = s/,] [i, 2, 7]. Further, 
we find 

U = ~2~+11'X2~+I, 0 = dX 8, v = --v~+1[(~ + I)//- ~/'qlX ~. (2.4) 

It is possible to observe that at large x, Eqs. (2.4) transform to expressions from [1-3]. 
Without writing out known solutions for plane jet sources, we observe only that Eqs. (2.4) 
also differ from [1-3] in the variable ~: 

. 

series: 
Following [4-6], approximate solution to the problem is sought in the form of the 

co 

~ p = ~ + ~  ~ A ( ~ ) 2 %  o =  Ed~(~)xS<,  ( 3 . 1 )  
i : O  i : O  

~l = (x , ; )@,  %~ = [~ + t - -  i. 

Substituting (3.1) in equations from system (i.i) and equating coefficients of same powers 
in x, we get an infinite system of differential equations for the determination of unknown 
functions: 

m tp r 2 

/0 + (6+ I)/o/0-(2~+ I)/0 =0, (3.2) 
tt t r 

P r  do -}- (~ + t ) / o d o  - -  6 /od o = O, 

m t t  . t ! t !  

/ i  + (~ + 1)/o/i - -  (4~ + 2 - -  t)/o/i + Xi/o/i = N~, 
e t t 

Pr d~ + (~ + 1)/od~ - -  (6 - -  i ) /od~  = M ~ ,  ~ 

i - - 1  

Ni = ~ [[2~ + I-- (i-- /)]/j/i-~--(~ + l--j)/~/i-j 
j=l 

i-i 
t t t , t 

M i  = 6 / ido  - -  k~/ido + ~ {[6 - -  (i - -  ] ) ] / jdi- i  - -  ([~ + 1 - -  ] ) / j d l - i } ,  
j = l  

H e r e  p r i m e  d e n o t e s  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  rl. The f i r s t  two e q u a t i o n s  i n  ( 3 . 2 )  h a v e  
known s o l u t i o n s  [ 1 - 3 , ' 7 ] .  I n  o r d e r  t o  o b t a i n  h i g h e r  o r d e r  t e r m s  we t u r n  t o  t h e  t h i r d  e q u a -  
t i o n  i n  ( 3 . 2 ) ,  i n  w h i c h  i t  i s  e x p e d i e n t  t o  i n t r o d u c e  new v a r i a b l e s  [ 4 ] :  
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'~ d /~=/0 -~ ~, w~=zy~, t=~3. 
/0 

After a number of transformations not included here, it reduces to the Legendre equation 
(~ = -~/~) 

2"  " ' 7V~ 
(l--z)y~--2zy~+6iy~= ~(i_z~) 

and to the hypergeometric equation (~ =--s/4) 

( ) '  ,, i 4 t w i @ 2-4-8t  144N~ 
t ( i - - t )  w i q- .3 3 - - - - ~ W i  

' 9~ ~ ( i  - -  t )  

The following self-similar equation [2, 3] is used here: 

(3.3) 

(3.4) 

= 6az, z = th  aN, a = (Ko~8p) ~'~, 

i2 ~ d~ 
/o=~Z2' N=-~- l--z ~ ' a=(40E0)I/4. 

The solutions to Eqs. (3.3) and (3.4) may be expressed in the form of the sum of solutions 
of the corresponding homogeneous differential equation and particular integral ~. The fol- 
lowing equations are obtained using boundary conditions (1.2) and (1.5), respectively, 

c Pk 
/~ = ci (4 - -  z 2) J ((--7)~ dz + ~ ;  

S /~ = c :  (1. - -  : )  ~ (~ + 2/a, b + 2/3, 5/3, : )  
(1 - ? f  dz + ~ ,  

ab = --2(t + 4i)/3, a + b = t /3 .  

Here  Pk(Z)  i s  L e g e n d r e  p o l y n o m i a l  o f  t h e  f i r s t  k i n d  [8]  l i m i t e d  t o  t h e  i n t e r v a l - - 1  < z < 1 
w i t h  c o n d i t i o n s  6 i  = k ( k  + 1 ) ,  k = 0 ,  l ,  2 ,  . . . ,  i = 1 ,  2 ,  . . .  ( c o n s e q u e n t l y ,  i = 1~  k =-- 2 
[ 4 ] ;  i = 7 ,  k = 6 ,  e t c . ) ;  F ( a  + a/3 ,  b + 2/3 ,  s /~ ,  z ~) i s  h y p e r g e o m e t r i c  f u n c t i o n  w h i c h  c a n  
be  e x p r e s s e d  i n  t e r m s  o f  a p o l y n o m i a l  [8] when t h e  f o l l o w i n g  i d e n t i t y  i s  s a t i s f i e d :  

5/6 -- (]/25 + 96i)/6 = --k (3.5) 

i = i, k = 1 [4] correspond to the first value of i according to (3.5), i = 29, k = 8 corre- 
spond to the second value of i, etc. We note that the constant of integration passes through 
the integral condition which, in terms of the variable D, has the form 

2/;/i+ h/ -J dn=o, 
--so .~ 

t 2 t t ~ 

/do + ~ h ~/d~-j-~ dN = O. 
0 J=O h=O 

This indicates that the indeterminate constants will continue to appear in the series (3.1). 
The particular integral for the given equation can be expressed in the form 

~i+I = (i + i) (~ + 2) 

It is then possible to sum these up to write asymptotic expressions for # and u: 

�9 t ' 

, = /0:+1 + .= +   I0:7 + - . ,  - ( 3 . 6 )  

Here  n = 6 f o r  t h e  f r e e  j e t  and  n = 28 f o r  t h e  s e m i b o u n d e d  j e t .  
i s  a l s o  o b t a i n e d  i n  a s i m i l a r  m a n n e r :  

The solution for temperature 
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O=dox~ + ~_~ 1 ~ i ~=o ~ - ~  (~a'm + ( 6 -  ~) a~) ~ -~ -~  + . . .  

(3.7) 

In principle, it is possible to approximate ~, u, and e by higher-order terms (i > 7, i > 29) 
but in doing this new undetermined constants appear and the resulting equations h~ve an e--x- 
tremely unwieldy form. 

Continuing the analysis, we observe that Eqs. (3.6) and (3.7), representing approximate 
non-self-similar solution to the problem, following directly from Eqs. (2.4) if they are 
written in the form 

and expanded in series 

u = ~ + ~ I ' o  (n (X/x)~) X ~+~, 0 = do (n (X/x)~) x 8 

1 
u ( t )  = u (0) + tu '  (0) + 2--7. t2u" (0) -5 . . .  

in terms of the variable t = y/(B + l)x 

u ~+i Ix~+1 + ~ ~(~iin + (~ + ~)l~)x~, (3.8) 
i=0 

6 = dox~ + ~ ~ (~d~1 + (8-- i) d~) x~-~-t 

These results (3.8) make it possible to conclude that the new undetermined constants that 
appear in series (i > 7, i > 29) according to (3.6) and (3.7), do not correspond to the value 
of the quant4ty y specified a priori. These, apparently, represent the general shortcomings 
of asymptotic boundary-layer schemes. In addition, it is possible to observe that the series 
(3.6) and (3.7) converge to exact solutions (2.4) for all 

I~/(~ i 1)zl < ~ 

In order to complete the solution to the problem (i.i)-(i.ii), it is necessary to deter- 
mine the constant of integration y which is present in boundary and integral conditions. It 
is characterized by mass flow rate per second through the initial jet section mo: 

%' : m~/( lO8p2~Ko) ,  ~ =: m2/(160p4~Eo). (3.9) 

Developing analysis further, we note that the relations (2.3), (2.4), and (3.9) are self- 
similar solutions [1-3] but displaced along the x axis. Physically, this means that the jet 
issues from a fictitious source located within the nozzle at such a distance from the exit 
section that the fluid flow rate at the nozzle section given by self-similar solution coin- 
cides with actual flow rate. 

4. Let us consider again the above solution for the temperature field. The energy 
equation was studied while specifying integral conditions for excess enthalpy. It replaces 
detailed conditions for the flow from the nozzle. However, actual jets (issuing from finite- 
sized nozzles) can have different initial velocity (temperature) profile shapes. Hence it is 
more interesting, apparently, to consider the temperature distribution at a certain jet sec- 
tion. The solution to the energy equation in such a formulation may allow, in particular, 
qualitative and quantitative description of the process of distortion of the initial tempera- 
ture profile, determination of the effect of Pr, etc. 

In this case, the following equation is specified in addition to Eqs. (I.i), boundary 
(1.2), (1.3), (1.5)-(1.7), and integral conditions (for the velocity field 

AT (x, y)Ix=x, = AT (x0, g) = T,. (4.1) 

Here self-similarity, in general, is not present and it is necessary to solve the eigenvalue 
and eigenfunction problem. The solution to the third equation of the system (i.i) is sought 
in the form 
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^r(x,,1) v ~' = .~c~X OiOI). (4.2) 
"i=O 

Using the above results (4.2) to determine 0i(n ) we have 

t 0" Pr ~ q- (~ q- l ) /O' i--  a i /  Oi = O, ( 4 . 3 )  

wh ich  r e d u c e s  to  h y p e r g e o m e t r i c  e q u a t i o n  f o r  t h e  g i v e n  b o u n d a r y  c o n d i t i o n s  ( 1 . 3 )  w i t h  t h e  
h e l p  o f  t h e  t r a n s f o r m a t i o n  t = t a n h  2 a~ 

[ + (  3)I t ( t - - t )  O~+ + P r - -  t O i - - - u P r c q O i = O ,  ( 4 . 4 )  

0 i ( t ) ~ O ,  limtl:20'i =0. 
t -~0 

The solution to Eq. (4.4) can be written in the form 

Oi =-c lF(a ,b , l /2 ,  t) + c2-]//tF(a + 1/2, b + t /2 , .3 /2 ,  t), ( 6 . 5 )  

a + b = t / 2 - - P r ,  ab = 3~iPr/2. 
The second boundary condition (4.4) shows that the first integral expression (4.5) is the re- 
quired solution which satisfies the first boundary condition (4.4) when a = i + I/2. Then 

a~ = --(2i ~- t)(Pr + i)/3Pr. (4.6) 

Keeping in view Eqs. (4.2), (4.5), and (4.6), we find 

oo 

AT = ~ C~(XIXo)~( I - - t )PrF( - - i ,  i +  Pr + 1/2, t/2, t). (4.7) 

Further, since Jacobian polynomials [9] are orthogonal, the constant C i is determined by: 

1 

Ci = (2i + Pr + t/2) P (i @ Pr @ 1/2) r (i _L I/2) I T~ F (-- i, i 
hi' (i q- 1) F (Pr -c i @ l) 

0 

+ Pr + t/2, 1/2, t) dr. (4.8) 

In deriving (4.8), relation between hypergeometric functions and Jacobian polynomials [9] is 
used : 

( i+a)!  f - - i , i + a + ~ + l , a + t ,  2 2 ~ P?~(~)= ~!t! 

The above  t h e o r y  can  be g e n e r a l i z e d  even  f o r  t h e  c a s e  o f  s emibounded  j e t  w i t h  b o u n d a r y  c o n d i -  
t i o n s  ( 1 . 6 ) ,  i . e . ,  " s i m i l a r "  b o u n d a r y  c o n d i t i o n s  f o r  v e l o c i t y  and t e m p e r a t u r e ,  and i n s u l a t e d  
p l a t e  c o n d i t i o n  ( 1 . 7 ) .  

E q u a t i o n  ( 4 . 3 )  i n  v a r i a b l e  ( 2 . 1 )  r e d u c e s  t o  h y p e r g e o m e t r i c  e q u a t i o n :  

tr ! 8 
t ( l - - t )  Oi + [ +  + ( P r - -  + )  t] 0 i - -  --Uc% Pr 0r = 0; 

1) 0~(0)=0,  8~(1)=0; 2) limt2/30'~=0, O~(l)=O. 
t--~0 

Here the prime denotes differentiation with respect to t = z 3. The desired results are writ- 
ten in the form 

1) AT = ~ Ci (X/Xo} ~ t ~'~ (1 --  t) Pr F (-- i, i § Pr  § 4/3, 4/3, t); 

co 

2) AT = ~_~ C~(X/Xo) ~ ( t -  t) vr F ( - -  i, i + Rr + 2/3, 2/3, t); 
i = 0  

t,~ cr : (i -~ t) (t 8 +pr3 Pr + 3i)., 2) cq ~- --  (3i @ 2)8 Pr(Pr -~- i) 
i 

(4.9) 
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u/u o 

~9 

gTO ~ gz o,4 ae 2x/clRe , 

Fig. 1 

Coefficients C i are determined from orthogonality conditions for Jacobian polynomials: 

1 

i )  Ct = A~ J" T o f  ( - -  i, i + P r  + 4/3, 4/3, t) dt;  
0 

1 

2) C~ = B~ .f To t-1/~ F ( - -  i, ~ + P r  + 2/3,  2/3,  t) dt; 
0 

Ai _--.(2i ~ P r -~  4/3) r (i --~- Pr  -~ 4/3) r (i ~ 4/3) .  
[ r  (4/3)] 2 r (i -6 t) r (i -~ Pr  + 1) ' 

B i  = .(2i -~ Pr  -~ 2/3) F (~ -]- Pr  ~{- 2/3) r (i -~- 2/3) . 
IF (2/3)13 g (~ -[- t) r (t -i- Pr  + t) 

The expression for To is given in Eq. (4.1). We observe that the principal term in series 
(4.2), as seen from results (4.7) and (4.9), is given by expressions which coincide with 
solutions (2.4) accurate to the constant, obtained above in providing initial condition for 
integral relation (i.i0) and (i.ii) (for the temperature field). The following terms of 
series (4.2) make it possible to take into account the effect of initial temperature profile 
To, while Prandtl number Pr has significant effect on subsequent asymptotics. It is inter- 
esting that the constant dx in the self-similar solution [6] is not determined by integral 
condition [when ~ = --s/4, ~ = --(3Pr + l)/8Pr], as already mentioned in [I], except in the 
case Pr = i, when there is a general (not associated with the assumption of self-similarity) 
invariant. If, instead of the integral condition, relation (4.1) is introduced, then the 
problem, as seen from the results obtained, is completely solved. 

The variation of maximum velocity along the axis of the free jet is shown in the figure 
(uo is jet velocity at the initial section, d is the nozzle diameter, Re = uod/2~ is the 
Reynold's number, x, = 2x/dRe is the nondimensional axial coordinate [I0]). The curve 3rep- 
resents computations using Eqs. (2.4) and the points represent numerical solution [i0]. A 
comparison of velocity distribution U/Uo computed from analytical expressions (7o = 4vy/ 
uod 2 = 0.0867) with numerical results [i0], indicated their good agreement, except in the re- 
gion close to 0 where Eqs. (2.4) give higher, though not contradictory, values. Self-similar 
(curve i) and approximate non-self-similar [4] [three terms of the series (3.6)] (curve 2) 
analytical solutions are also shown in the figure. 

In conclusion, we observe that all the approximate non-self-similar solutions found 
earlier are obtained as a particular case from results of the present work. 

LITERATURE CITED 

i. L. A. Vulis and V. P. Kashkarov, Theory of Viscous Fluid Jets [in Russian], Nauka, Mos- 
cow (1965). 

2. N. I. Akatnov, "Plane, incompressible laminar jet along a solid wall," Leningr. Politekh. 
Inst., No. 5 (1953). 

3. H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York (1968). 
4. V. I. Korobko and S. V. Falkovich, "Some nonsimilar problems in the theory of jet flows," 

Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2 (1970). 
5. V. I. Korobko and V. N. Korovkin, "Development of plane laminar gas jet in unbounded 

space," Izv. Akad. Nauk BSSR, Ser. Fiz.-Energ., No. 3 (1978). 
6. V. I. Korobko and V. N. Korovkin, "Heat transfer in semibounded plane laminar gas jets," 

Izv. Akad. Nauk BSSR, Ser. Fiz.-Energ., No. i (1980). 

194 



7. R. S. R. Gorla, "Combined natural and forced convection in a laminar wall jet along 
vertical plate with uniform surface heat flux," Appl. Sci. Res., 31, No. 6 (1976). 

8. G. Bateman and A. Erdelyi, Higher Transcendental Functions. Hypergeometric Function. 
Legendre Function, McGraw-Hill. 

9. G. Bateman and A. Erdelyi, Higher Transcendental Functions. Bessel Functions, Parabolic 
Cylindrical Functions, and Orthogonal Polynomials, McGraw-Hill. 

i0. B. P. Beloglazov and A. S. Ginevskii, "Computation of laminar satellite jets with exact 
satisfaction of the condition of constant excess momentum," Uch. Zap. Central Aero- 
Hydrodynamic Institute (TsAGI), ~, No. 4 (1974). 

COLLISION OF PLANE, VISCOUS, MULTILAYERED JETS 

M. V. Rubtsov UDC 532.522+532.526 

In order to determine the differences in real flow with high-speed collision of metallic 
plates from known [i, 2] inviscid flow, Rubtsov [3] considered the problem of symmetric im- 
pingement of plane viscous jets with free boundary. The problem is solved approximately as- 
suming boundary-layer corrections to inviscid flow near the free boundaries at sufficiently 
large Reynolds numbers. A solution is obtained to the first approximation from simplified 
correction w(%~) to the inviscid velocity u0(%~) along the stream line. The simplified 
equation is obtained from Navier--Stokes equations by carrying out order-of-magnitude analysis. 
It is of interest to use this method to study the problem of jet collision when each jet com- 
prises a number of layers with different viscosity but the same density. 

i. Consider stationary inviscid flow in the region shown in Fig. i. Two jets of equal 
thickness h flow from infinity with the same velocity U at an angle y to the axis of symmetry. 
The x axis is along the axis of symmetry. Consider half the flow region. The free jet con- 
sists of N layers of equal density 0 and different viscosity ~l and thickness ~Z, Z = i, 2, 

N 
..., N, ~6~=h �9 The flow region is limited by the x axis and two free boundaries E: and 

l=l 

E2. There are N -- 1 boundaries in the flow region F1, F2, ..., FN-~. The velocity compo- 
nents along x and y are denoted by u and v. Normalizing x and y by h, u, v by U, and pressure 
p by pU 2, Navier--Stokes equations are written in the form 

Ou l Ou l Op! ,l 
ul- 'b- ~- + vt 09 = - -  0--7- + "~-el Aut '  ( 1 . 1 )  

Ov l Ov l Op! I 
uz --bT" + vz ou o~- + ~ Avz,  

J /11  
f 

Fig. 1 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fizika, No. 2, 
pp. 34-41, March-April, 1984. Original article submitted January 26, 1983. 

0021-8944/84/2502-0195508.50 �9 1984 Plenum Publishing Corporation 195 


